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S U M M A R Y  
An exact solution to the two-body interaction problem is presented for the case of spherical shapes moving in an 
incompressible and inviscid fluid. The spheres are assumed to translate in an arbitrary manner and to undergo 
radial deformation (or pulsation). The problem is formulated in terms of sphericai harmonics and the force 

experienced by the spheres is obtained by employing the Lagally theorem. The expressions for the force are given as 
an infinite sum of coefficients which are found by solving an infinite set of linear equations. Three main geometries 
are considered, namely, two spheres exterior to each other, one sphere in the interior of the other and sphere in a 
rectangular channel. Numerical values for the added-mass coefficients as well as for the hydrodynamic forces are 
found for the case of rigid sphere moving toward or parallel to a rigid wall or a free surface, and a pulsating sphere in 
the proximity of these boundaries. Also given are numerical values for the transverse and the longitudinal added- 
mass coefficients for a sphere moving in a rectangular channel for different channel-blockage ratios. 

1. Introduction 

A common hydrodynamical problem involves the determination of the interactive forces 
between adjacent moving particles immersed in a fluid medium. This interaction is 
important for example in studies of two phase flows, bubble dynamics, mechanics of 
suspensions, multi-phase heat and mass transfer, combustion of droplets, settling of rain 
drops and hydrodynamics of biological systems. On a large scale the problem arises in the 
field of transportation such as the motion of bodies (or vehicles) past each other, critical 
collision-avoidance maneuvers as well as maneuvers in a confined or dense medium. When 
the distance between the particles is relatively large, their interactive force may be neglected. 
However, when the distance decreases so that, for example the concentration of the particles 
in a two-phase flow situation is of the order of one percent, the particle interaction must be 
considered in the analysis of the hydrodynamical problem [1]. In many cases shapes are 
encountered which, to a first-order approximation, may be replaced by equivalent spheres 
having the same volume as long as interactive effects are considered. Such spherical shapes 
may be rigid, undergo continuous deformation or may exhibit pulsating motion. For 
moderate and high Reynolds number flows, a first step towards the solution of the viscous 
and possibly thermal problem might be the potential flow solution. In particular the 
assumption of potential flow past bubble surfaces was found to be fairly accurate [-2]. 
Potential theory has also direct applications in the analysis of superfluids such as liquid 
helium or the interior of a neutron star. In the hydrodynamical analysis of critical 
maneuvers of contiguous vehicles, a common practice is to calculate the mutual interactive 
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force by assuming the fluid to be inviscid and incompressible. Even with such an 
assumption, which was found to yield practical results, the computation of the two-body 
interaction is a formidable task. For this reason simple geometries are usually used to 
approximate the shapes. For example, a two-sphere model was used in the analysis of the 
two-train problem [3]. 

Several solutions for ideal flow about two rigid spheres are available. The first classical 
solutions are due to Stokes [4], Basset [5], Hicks [6] and Herman [7], which are based on 
the method of successive images and provide approximate solutions for both the velocity 
potential and the kinetic energy of the fluid. Michael [8-1 solved the problem of potential 
flow past a row of identical spheres by using an electromagnetic analogy and more recently 
Small and Weihs [9] and Love [10] presented an exact series solution for the potential 
function in the two-sphere problem by employing bispherical coordinates. The sphere- 
sphere interactive force was considered first by Endo [11], by calculating the pressure 
distribution on the spheres, then by Kawaguti I-3] for two spheres in collinear motion and 
later by Voinov [12] who calculated the force between spheres a small distance apart. The 
method of successive images has been also employed by Helfinstine and Dalton [13] who 
derived approximate expressions for the interactive force between a group of rigid 
stationary spheres in potential flow. To the best knowledge of the author the force between 
two deformable spheres in a general motion has not yet been considered. 

In the present analysis a generalization of the Lagally theorem [14] and formulation in 
terms of spherical coordinates are used to derive exact analytic expressions for the 
interactive force between two moving Contiguous deformable spheres. The use of spherical 
rather than bispherical coordinate system was found to be more convenient for the following 
reasons; the use of bispherical coordinates is limited to two spheres in collinear motion 
whereas the spherical coordinate system can handle several spheres in general motion. The 
bispherical system can not be applied to radial motion of spheres or to the limiting case of 
touching spheres. Indeed Weihs and Small [15] have shown that a tangent-sphere rather 
than bispherical coordinate system should be used in the limit of two touching spheres. The 
present solution is free of these restrictions. In addition the solution presented in [9] is based 
on the application of the collocation method which may lead to considerable inaccuracies 
due to an improper choice of the mesh points. Spherical coordinates remove the necessity of 
collocation and finally enable one to use the recent generalization of the Lagally theorem 
1-14] to compute the forces acting on the spheres. Finally the present solution is expressed in 
terms of simple arithmetic expressions as compared with the complicated algebraic 
functions used in [9] and [15]. 

First an expression for the force acting on a single sphere moving in an arbitrary unsteady 
potential flow is derived. The general result thus obtained is used to compute the interactive 
force between two spheres in general motion. In addition to the force, expressions for the 
kinetic energy and for the added-mass coefficients are also derived. 

Three different geometries are considered, namely, two spheres moving in an infinite 
medium bounded internally by the two spheres, one sphere moving in the interior of another 
sphere, and a single sphere moving in a two dimensional rectangular channel. The first, the 
"exterior" case, is related to the common two-body problem, the second "interior" case has 
direct application to multiphase heat and mass studies employing the shell-model [16] and 
the third case is encountered in the body-in-a-channel or the classical "blockage" problem. 

Journal of Engineering Math., Vol. 11 (1977) 349-372 



Spherical shapes in an incompressible inviscid fluid 351 

2. The Lagally force on a single sphere 

A single sphere moving through an unsteady and non-uniform inviscid incompressible flow 
field will experience a hydrodynamical force. In a Cartesian coordinate system attached to 
the center of the sphere let R(x, y, z) denote the radius vector and V~(Uc, V~, W~) the absolute 
velocity of the sphere. In addition the sphere is allowed to have a uniform time-dependent 
radial velocity d where a is the instantaneous radius of the sphere. The image system (inside 
the sphere) of the external flow field may be considered as a series of multipoles lying at the 
center of the sphere. The exterior potential field may thus be given by 

~b'(x, y, x) = - ~2 ( -  1)"M. Ox~ypOz~ 
s 

R 2 = x 2 + y2 + z 2, (1) 

where ~, fl, 7 and n are integers such that n = ~ + fl + 7, M. is the strength of a general 
multipole of order n and ~2s denotes summation over all particular values of e, fl, and ?, 
representing the multipoles distribution. 

The generalized Lagally theorem [14], applied to a deformed spherical shape, yields the 
following expression for the hydrodynamical force acting on the sphere. 

F = p ~ -  V~- - 47r Z M. Ox~OypOz~ (R)o - 4~z Z M. Ox~Oy~Oz~ (r)o , 
$ s 

(2) 

where p is the fluid density, ~r denotes the volume of the sphere and r is the velocity induced 
at the location of the multipoles by all external flow producing mechanisms. The subscript 0 
denotes that the various partial derivatives of R and v should be evaluated at the origin, and 
t denotes time. 

Let the total velocity potential in the flow domain exterior to the sphere be given by the 
following series of spherical harmonics: 

O(x, y, z) = a[UOl(x, y, z) + Vff)z(x, y, z) + WO3(x, y, z) + d(Oo(X, y, z)] 

oo oo 

= a{d Y~ [D.(R/a)" + D.(a/R)"+~]P.(~) + U Z [A.(R/a)" + .4.(a/R)"+a]P.(.u) 
n = 0  n = l  

co 

~ / . + 1 ]  + V Z [B.(R/a)" + B.(a R) P. ~)  cos ~u 
n = l  

0(3 

+ W • [C.(R/a)" + C,,(a/R)"+~]P~u) sin ~u} (3) 
t t = l  

where (U, V, W) denote the three components of the characteristic translatory velocity 
vector Vand d is the radial velocity of the sphere. Note that for a moving sphere V~ -- Vand 
for a stationary sphere V = 0. The Legendre polynomials are denoted by P,"(~) where 
r  0 such that the transformation between the Cartesian (x, y, z) and the spherical 
(R, 0, ~) coordinate systems is given by 

x = R/t, y = R(1 -/~2)�89 cos ~,, z = R(1 -/~2)~- sin ~u. (4) 
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The eight dimensionless coefficients in (3) namely, A., B,, C., D., and A., B., C., D., are to be 
found from the following boundary conditions on the surface of the sphere: 

0~ 
- d + Ucp + V~(1 - #2)~ cos q/+ W~(1 - #2)~ sin ~u (5) 

3R 

which yield 

~. = - � 8 9  - 1) vs i + n-2-- n +  1 B. , 
t Wc/W3 c. 

and 

n = 1, 2, 3 . . . . .  (6) 

n 
D . =  - 5 ( n ) + - n - ~ D . ,  n = 0, 1,2 . . . .  (7) 

Here 6(m) is the Kronecker delta function which is one for m = 0 and zero otherwise. 
By applying the general formula [17], 

3x.-. ,  + i ~ x  x = ( -  1)"(n - m)!R-(.+l)p.~(p)eim~, (8) 

it can be shown that the image of the exterior potential field (1) is given by the following 
distribution of multipoles at the origin: 

~o (-i)" ~"-~ 
a n (o'(x, y, z) = -daZ /R  + a 2 ~ n[ (~x n-1 

n = l  

• (v2 .  + ~5.) ~ x  + nv~. ~-y + .wC.  ~ -  (9) 

where 4; denotes the vanishing-at-infinity part of the velocity potential given in (3). The 
remaining part of the velocity potential (non-singular at the origin) will contribute to the 
non-uniform velocity induced at the origin by all external flow-producing mechanisms, 
hence. 

~(x, y, z) = ~-x ' ~y' 4"(x, y, z) (10) 

where ~b" is the non-uniform vanishing-at-origin part of the velocity potential given by 

(a"(x, y, z) = a ~ [(UA. + dD.)P.~)  + (VB. cos ~ + WC. sin gt)P~)J(R/a) ' .  
n = 2  

(11) 

At this stage it is convenient to refer to a useful relation [17], namely 

c3 k (n + m)! R,_kp~_k(/z)eimq, (12) 
C~Xk {R'pnm('u)eim~'} - (n + ~ - -  k)t 

which is valid for n - m >_ k and gives zero on the right hand side of (12) for n - m < k. 
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Equation (12) can be used to derive the following expressions: 

~m ~m 

Oxm_k~y k {R"P.(#)}o - Oxm_k~Zk {R"P.(#)} o = m![-f(k) - �89 - 2)], (13) 

~m 
~xm_kOy k {R'pI,(p) cos ~U}o 

~xm_k~Zk {R"P~(lt) sin ~U}o = �89 + 1)!6(k - 1), (14) 

which are valid for k = 0, 1, 2 and (m, n) > 0. The subscript 0 in (13) and (14) again denotes 
that the partial derivatives have to be evaluated at the origin. 

Substituting eqs. (6), (7), (13) and (14) into the Lagally theorem (2) yields the following 
expressions for the three components of the hydrodynamical force F(Fx, Fy, F~): 

Fx 4 = Ucp ~[- [aa(U~ + 3UA~)] 

oo 
+ 2zrP az Z (n + 2){2[uZ/I.A.+l + Ud(.4./).+ 1 + / ) .A .+ I )  

n=0 

+ a2/ )n / )n+l]  -[- n(n + 2)[V2/~n/~.+ 1 + W2CnCn+l]), (15a) 

~ t  
f y  4. ~ =UrP [a3(V~+ 3VB1)]+ 2zca2P Z (n+ 2){UV[(n+ 2)A.B.+~-nB.A.+~] 

n=0 

+ fiV[(n + 2)/)./3.+ 1 - n/3./).+ a3}, (15b) 

GO 
Fz= ~ p  ~[aO 3(W~+ 3W~,)]+ 2zraZp • (n+ 2){UW[(n+ 2)~ .~ .+l-  nC..4.+,] 

n=0 

+ dW[(n + 2)/)nC.+ 1 - nC./).+ 1]}. (15c) 

The above expressions are symmetric with respect to y and z but not with respect to x 
because of the particular form chosen for the exterior flow field in equation (3). When the 
sphere moves in an otherwise undisturbed medium the summations in eqs. (15) vanish and 
the classical result for the force experienced by a sphere in unsteady motion is obtained. It 
will be also shown later that 1 + 3t]1, 1 + 3/~ 1 and 1 + 3C 1 denote the negative values of the 
three added-mass coefficients of the sphere in the x, y and z-directions respectively. 

As a demonstration of the use of eqs. (15), the force experienced by a stationary rigid 
sphere in a steady "constant shear" flow with velocity potential, 

~"(x, y, z) = a{U[x/a + ~(2x 2 - y2 _ z2)/a 2] 

+ V[y/a + flxy/a z] + W[z/a + 9xz/a2]} (16) 

is calculated where ~, fl and ~ are some prescribed coefficients. Substitution of (16) into (11) 
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and using (6) yields A1 =/~1 = C1 = 12, /:~2 = 4C~/3, / ~ 2  = 2fl/3 and C 2 = 2~/3. The rest of the 
coefficients in (9) are zero. Inserting these values into (15) renders 

F~ = 2~paa(4~U a + 3flV z + 3~W2), 

Fy = 2 ~ p a Z U V ( 3 f i -  2c~), 

F~ = 2 ~ p a Z U W ( 3 ~ -  2c~). 

(17a) 

(17b) 

(17c) 

The general expressions for the hydrodynamical force acting on a single sphere moving in a 
disturbed medium will be used to compute the force on a moving sphere due to the 
proximity of an adjacent sphere. In what follows the general motion of two contiguous 
spheres is analysed. The general velocity potential is expressed as a sum of four Kirchhoff 
potentials in the manner described in equation (3). Here ~b 1 denotes the unit velocity 
potential due to motion of the spheres along the line joining their centers (taken to be the x- 
axis) where q~2 and q~3 are the unit velocity potentials corresponding to motions in the y- 
and z-directions respectively in the plane normal to the line of centers. Finally ~b 0 denotes 
the unit potential due to the radial motion of the stationary spheres. In this manner series 
solution for the four coefficients A ,  B,, C, and / ) ,  are obtained which enable the interactive 
force to be calculated directly from equations (15). 

3. External motion of two rigid spheres along line of centers 

Consider the axisymmetric flow resulting from the motion of two contiguous rigid spheres 
in the direction of the line joining their centers. The digtance between the centers of the two 
spheres, of radii a 1 and a2, is denoted by b as depicted in Fig. 1. The origirtof the Cartesian 
coordinate system is chosen to be at the center of the sphere a 1 such that the x-axis is aligned 
along the line of centers. In such a coordinate system the centers of spheres a I and a z are at 
(0, 0, 0) and (b, 0, 0) and their translatory velocities along the x-axis are denoted by U 1 and 

U z respectively. In addition, two spherical coordinate systems (Rx, 01, ~ul) and (R2, 02, ~]J2)' 
which are attached to the centers of spheres a 1 and a 2 respectively, are defined by 

x = R 1 cos 01 --- R 2 COS 02 -~- b, 

y = R 1 sin 01 cos ~u I = R 2 sin 02 cos ~u 2, (18) 

z = R 1 sin 01 sin ~u 1 = R z sin 02 sin ~u 2. 

The far field behaviour of the velocity potential in the domain exterior to the spheres is given 
by 

oo o0 

4)1 Ula l  2 A~P.(I-tl)(al/R1)"+l + U2a2 2 ~2 n+l = A.P. (~2) (az /R2)  , (19) 
n = l  n = l  

where ~1 and ~2 A. are coefficients to be determined and #1 = cos 01, #2 = cos 02. 

On the assumption of rigid spheres, a Neumann type boundary condition, applied on the 
surface of the spheres, implies 

OR 1 - U l p  1 on R 1 = aa, (20a) 
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Figure 1. The "external" case. 
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OR 2 = U2~/2 o n  R 2 = a 2. 
(20b) 

To apply these boundary conditions to (19), use is made of some transformations [17], 

o~ 

P ' ~ 2 ) R 2  ('+1)= Z ( - 1 )  "-m ( n + m + k ) !  h -("+m+k+a)p" ~,, ~R m+k (21) 
k=0 ( n - m ) ! ( 2 m + k ) t  ~ -m+k~, ,  1 , 

( n + m + k ) }  h-("+m+k+l)P " ~,, ~R "+k (22) 
P~'~ul)R~-('+x) = ~2 ( - 1 )  k ( n - m ) l ( 2 m + k ) !  ~ m+kV'*2; Z ' 

k=0 

where equation (21) is valid for R1 < b and (22) for R 2 < b. 
Substituting (21) into (19) yields for the latter 

oo 

r = Ulal Z A1,P,(ctx)(al/R1) "+1 
n = i  

~ A,.(--1)" (n + m)! m+l , n 
-}- U2a2 Z v~ ~2 22 2~P,Cu~)(R~/a~), (23) 

n!m[ n = 0 m = l  

where 21 = al/b and 22 = a2/b. Applying (20a) to (23) together with the orthogonality 
properties of the Legendre polynomials, yield the following relation between A~ and ~Zl2n : 

nel n-1 ~ ~2 m (m+n)!  , I r a + 2  
- -  A , . ( -  1)  m !  "~2 , ~1 = -�89 - l) + (n + 1)! 21 ~2 - -  (24) 

m = l  

where e 1 = U2/U r Repeating the same procedure of substituting (22) into (19) and using 
(20b) yields 

n o0 

1) 22 ~ Am m! "~1 " .~2= _ � 8 9  l)! ( _  , n - l m = a  ~a (m+n)!  ~,,+2 (25) 

The two sets of linear equations (24) and (25) can be solved for the coefficients ~1 A,, yielding 
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oo 

Z ~1 k (26) Ak Yn = Xn, 
k = l  

where 

1. ^ ~ 3 n n -  1 Z, = �89 - 1) + 2n~aLZL1 (27a) 

and 
o0 

/'l , I n + k + 1  ~ (m+n)!(m+k)! , ] 2 m + 1  
irk= -~(n-k)-~ kt(n+ 1)! "~1 (m- -1 ) t (m+  1)! -o2 

m = l  

(27b) 

Once the ~ t  are found, the coefficients .4~ may be obtained from (25). In the case where one 
of the spheres is stationary, say Uj -- 0 (j = 1, 2), the above equations are still valid 
providing UjA~ is finite. It may be noted that for the particular case of identical spheres, 
a 1 = a 2 and e 1 = _+ 1, the solution of (24) and (25) implies that 

~ 2  (__  n + l ~ l  = 1) A,. (28) 

For  the case of identical spheres the coefficients may be found directly from 

(re+n)!),,+,+ t (29) 
~1 = - � 8 9  1) (n+ 1)! m=l 

A quantity of interest is also the kinetic energy T1 of the fluid exterior to the spheres which is 
given by 

- T ~ = � 8 9  s ~)l(Rt, p l ) f l ldS l+lpU2;  c~l(R2, fl2)P2dS2, (30) 
1 2 

where S 1 and S 2 denote the surface of the spheres a 1 and a 2 respectively. Substituting (19) 
into (30) and performing the integration renders a rather simple result for the kinetic energy 

of the fluid, namely, 

- T 1 = 2~zp[a3U2(1 + 3A~) + aa2U2(1 + 3A2)] (31) 

implying also t h a t - ( 1  + 3.4~) a n d -  (1 + 3/]~) are the longitudinal added-mass coefficients 
of spheres a~ and a 2, respectively, for translation along the x-axis. 

4. External motion of two rigid spheres normal to line of centers 

Here the interaction between two spheres moving in a plane which is normal to the line 
joining their centers is analysed. First the case where the two spheres are translating with 
velocities V 1 and V 2 in the y-direction is solved. Because of symmetry the results thus 
obtained are also applicable for the case where the spheres are moving in the z-direction 

with velocities W 1 and W 2. 

In the same coordinate system used in the previous section, the exterior velocity potential 
resulting from the motion of the spheres in the y-direction may be written in the following 

Journal of Engineering Math., Vol. 11 (1977) 349-372 



Spherical shapes in an incompressible inviscid fluid 357 

~ rm:  

oo oo 
/~1 1 (32) B.P.  (u2)(a2/R2) cos q]2, 02 = Vial ~, nPn(/_ll)(ai/R1)n+l C O S g / 1  + V2a2 ~ ~2 1 n + l  

n = l  n = l  

where V1 = ~2, and both/3~ and/~2 are to be found. The proper boundary conditions on 
the surfaces of the spheres are 

0(02 - V1PI~I)  cos ~q on R 1 = ap (33a) 

and 

~r _ V2p] (/t2) cos ~2 o n  R 2 = a 2 .  (33b) 
63R 2 

Using the transformation (21), equation (32) may be rewritten in the following two 
equivalent forms: 

~ b 2 ( R 1 , / A l '  ~ /1)  = Vlaa 
oo 
~ .  ~1 1 n + l  B.P.~I)(a~/R ~) cos  ~'1 

n = l  

ao oo 

- B , . ( -  1) V2a2 E Z ~z ,. 
n = l m = l  

(re+n)! m + l  n 1 n 22 21P.(,ul)(R1/al) cos~ul, (34) 
(m - 1)! (n + 1)! 

o r  

oo 
~ 2  1 n + l  ~b2(R2, P2, ~u2) = Vza2 E .P.(uzl(az/R2) cos V2 

n = l  

~3 oO 

Vial Z E ~1 n (m + n)! 1 . 1 . - Bm( - l )  ( m - ] - ) ~ + l ) !  27+ 22P"(Pz)(R2/az) c~ (35) 
n = l  m = l  

which together with (33a) and (33b) yield 

= - -  n c 2  n - 1  m ~2 m ( m ~ - n ) !  ,qm+2 
Bin(-1) (m-1)! '~2  , .B~. -�89 1 ) -  (n+  1)(n+ 1)! 21 E (36) 

m = l  

and 

~2 _ -�89 - 1) - n | (m + n)! 2],+ 2 (37) 
B. - e2(n+ 1)(n+ 1)! ( - -  X ) n ~ - i  'y~ Blm (m-- 1)! 

m = l  

where/~2 = V2/VI" Solving (36) and (37) fo r /~  gives the following set of linear equations: 

oo 

2 B~ Y2 = z., (38) 
k = l  
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where 

F/~2 ) n  - 1 ,]3 
Z, = �89 - 1) + ~ n § 1 "'i "~2 (39) 

and 

n ~.+k+i ~ m(m+n) ! (m+k) !  
yk= _ f i ( n _ k ) + ( n + l ) ( n + l ) ! ( k _ l ) ! . o  1 ~"Z= 1 (m + ] ) ~  Z D.v ~ + 1) !' (40) 

Having f o u n d / ~ ,  one obtains the coefficients/~z from (37). When one of the spheres is 
stationary, say Vj = 0 (j = 1, 2), the above analysis holds for V~B~ finite. For the particular 
case of identical spheres, a 1 = a 2 and e 2 = _+ 1, 

(_  .+1-1 = 1) B,, (41) 

and the coefficients/~1 may be found directly from the simplified version of (36) namely, 

he2 ~ ~l (re+n)! ~m+,+ l 
5 Bm ( m - ~  'v -~1 /~1 = - �89  1)-+ (n+  1)(n+ 1)! =l (42) 

The kinetic energy of the exterior fluid, T 2, is given by 

- T2 = �89 fs q52(Ri' #i, ~i)Pl~1) cos qJl dSi 
1 

+ �89 fs  ~b2(R2' #: '  ~u:)Pl(~2) cos ~:dS:,  
2 

(43) 

yielding 

- T 2 = 2~zp[a~V((1 + 3/~I) + a~V~(1 + 3/~2)] (44) 

again, implying that the longitudinal added-mass coefficients for translation along the y- 
axis, a r e - ( 1  + 3/~) a n d - ( 1  + 3/~) for sphere a i and a 2 respectively. All the expressions 
derived in this section are also valid for the coefficients C, ~ and C 2 corresponding to motion 

~1 ~2 ~1 ~2 in the z-direction, provided B., B. are replaced by C., C., respectively, and e 2 is replaced by 
% = 

5. External motion due to two adjacent pulsating spheres 

Here the spheres are assumed to pulsate with radial velocities d i and ci 2 while the centers of 
the spheres remain fixed in a space. Let the velocity potential in the exterior domain be given 
by 

oo oo 

qbo = dial Z Dx.P,~i)(al/Ra)"+l + daa2 ~ D:P,,(/~2)(a2/R2) " . 1 " , ,  
n = 0  n = 0  

(45) 
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/) 1. and ~2 are some unknown  coefficients, and the bounda ry  condit ions on the spheres are 

ar aq~o 
aR I - d 1 on R 1 = a l ;  aR 2 - d 2 o n  R 2 - -  a 2. (46) 

Using the t ransformat ions  given in (21) and (22), one m a y  express q5 o as 

o r  

co 

Oo(Rp#l )  = dial Z D1.P.~I)(al/R1) "+1 
n = O  

co co 

+ d 2 a 2  Z Z /~2(_ l )m ( r e + n ) !  2..+ 1 . 
.=o r.=O re!n! ~2 21P.(#l)(R1/aI) , (47) 

co 

r  ) d2az y~ ~2 .+1 = D.P,,~z)(a2/R2) 
n = O  

co co 

+ d i a l  Z E / 5~ ( -1 ) "  ( n + m ) !  ~+1 . .=o ,.=o n!m! 21 ,,~2Pn(,az)(R2/a2) , (48) 

which together  with (46) yields the following two sets of linear equations:  

and 

ne~ 2] -1 Z ~2 (m + n)! ~r~+2 (49) 
- -  D m(-1)m m! "~2 /)~ = 6(n) + (n + 1)! m=o 

n co 

1) 22 ~ Dm m! ~2 = --6(n) -+ eo(n + 1)! ( -  " . - 1  ~1 (m + n)! 2],+2, (50) 
m = O  

where e o = dz/d 1 (implying also that /5~ = /~2  = _ 1). Solving (49) and (50) for/).~ gives 

or? 

' ~  ~1 k 
Dk Y~ = Zn' 

k=O 
(51) 

where 

Y/~0 ,ln - 1,]2 X. = 6(n) + ~ . ~  "~2 

and 

(52) 

n ) .+k+ l  ~ ( m + n ) ! ( m + k ) !  ,]2m+1 

y 2 = - 6 ( n - k ) +  k! (n + l)! -ol 5=o (m - 1 ) !  (m + l)!  -o2 �9 (53) 

For  the case where a 1 a 2 and e o + 1 we h a v e / ) .  1 ( _  n ~2 ~1 = = = 1) D., where D. may  be found 
f rom a simplified version of (49), 

co (m + n)! ~.+r.+l  
neo 52 / ~  m! --~1 �9 5 .  ~ = - 5 ( n )  + (n + 1)! ~=o (54) 
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Finally the kinetic energy of the fluid excited by the pulsation of the spheres, To, is given by 

-To  55) 
1 2 

Substituting (47) and (48) into (55), one obtains after performing the integration 

oo 

_ To = 2~p{a~dZa[_l  + eo2~-~ ~2 / ~ ( _  1) 22,, ,.+2] 
, . = 0  

oo 

D"21 3}, (56) +a~d~E-1+eo12; 1 Z -~ ,.+z 
m = 0  

which cannot, like the previous cases, be expressed merely in terms of a single coefficient. 

6. Internal motion along line of centers of two deforming spheres 

Here the motion of sphere a t with velocity U 1, in the interior of a stationary sphere a 2 (Fig. 
2) is considered. Both spheres are assumed to have radial velQcities al and d z which must 
satisfy the relation 

alax. 2 = d2a~ ' (57) 

since the fluid bounded by the two spheres is incompressible. The total velocity potential in 

the interior fluid domain is expressed as 

= ~ R , + l p  qS(Rl, l l l )  U1al Z [E , (R1/a i )"  + E , ( a l /  1) ] , ( lq) ,  
n = O  

(58) 

02 

where (R 1, Pa) and (R2,/A2) are axisymmetric spherical coordinate systems attached to the 
center of spheres a s and a z respectively, and both E, and E. are prescribed coefficients. The 

360 T. Miloh  

Figure 2. The "internal" case. 
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boundary conditions on the spherical surfaces are 

OR 1 - U,I*I + dl on R 1 = a 1, (59a) 

and 

cqR2 - -  d 2 on R 2 = a 2. (59b) 

Applying (59a) to (58) yields 

/~ _ Uld~ a(n) - �89 - 1) + ~ E . . n  (60) 

To transform (58) into the (R2,/~2) coordinate system the following transformations are 
used [17]: 

Pn(121)(al/R1) n+ l 

o0 

= ~2 ( -  1)"(m + m)! ~.+ l ~ - ( n + m +  a)p.+m~z)(a2/Rz).+m+ 1 (61) 
n!m! "~1 "~2 

l,n~O 

and 

P.(pt)(Rffa~)" = • m! ( n -  m)! 2"2-m2?"P"-m~z)(Rz/a2)"-" (62) 
m = 0  

by which equation (58) may be expressed as 

0~ (n + m)! 
(9(R2, l z2)=Ulal  Z Z En+m n[m[ 

n=O rn=O 
- -  2"227("+m)p.~2)(R2/a2)" 

~o ~o ( -1 )%!  ~ _ ( . + l ) ~ . _ m + l p . ~ 2 ) ( a z / R 2 ) . + l "  (63) + Ulal Z 5". ff~.-m n ~ ! ( s  ! "~2 -1 
n = O m = O  

Applying (59b) to (63) gives 

o~ n(n + m)! ~ ( -  1)%! 
Z E.+m m!(n+ 1)! 2~-" -  Z /~.-m m l ( n - m ) !  2 1 m 2 2 ( 2 n + l )  

m = O  m=O 

= ( z2 / ,h ) (a2 /v~)a (n) .  (64) 

Solving equations (60) and (64) for E. gives 

O9 

E ekv2 = z.,  (65) 
k=O 
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where 

Z, = (22/2a )(Ut2/U1)~(n) - ( ~ / U ~  ) ( -  1)"2~-"2~ -(2"+ 1) 

~_ }y/(_  1)n~11 -n;~2 (2n + 1) (66) 

and 

nk! n n! 
yk = (n + 1)! (k - n)! H ( k  - n) - ( -  1) n-k --n + 1 k! (n - k)! "~l)k-n]-(2n+'~2 X)H( n - k), 

where H(k)  is the Heaviside step function which is unity for k _> 0 and zero for k < O. 
(67) 

7. Sphere moving in a two-dimensional rectangular channel 

Consider the motion of a sphere of radius a in a two dimensional rectangular channel of 
width b at the instance the sphere's center lies on the center-line of the channel as depicted in 
Fig. 3. In a Cartesian coordinate system with the origin at the center of the sphere, the 
channel plane walls are given by x = _+ b/2. The three components of the translatory 
velocity are denoted by (U, V, W) and d is the sphere radial velocity. It is also assumed for 
simplicity that the fluid in the channel is disturbed" only by the motion of the sphere. In this 
example, which obviously can not be solved by employing bispherical coordinates, it is of 
interest to determine the force and the added mass coefficients of the sphere. 

To account for the Neumann boundary conditions on the channel walls, an infinite 
row of image-spheres with centers at (jb, 0, 0) is considered._ Here j is an integer such that 
- ~ < j < ~ .  In addition, spherical coordinate systems are defined so that the system 
(R j,/z j, ~uj) lies at the center of the jth sphere namely at (jb, 0, 0). The value of j = 0 cor- 

responds to the original coordinate system such that (R, #, ~u) = (R o, #0, ~u0) and similarly 
~uj = ~u for all values ofj.  

/ / / / / / / / / / / / / / / / / / ~ / / / / / / / / / / / / / / / /  

- ~a b 

z 

/ / / / / / / / / / / / / / / / / / / / /  / / / / / / / / ~ / / /  

Figure 3. Sphere in a channel. 
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Using these notations, one can express the velocity potential in the channel as follows: 

(o(R, g, gt) = Ua d?~(R, #, ~) + Va q~2(R, #, ~) + Wadpa(R, tz, ~') + da 49o(R,/2, ~) 

o0 oo oo Go 

= Ua E Y' A . ( -1 ) IJ Ip .~ j ) (a /Ry  +1 + Va E 2 B.PI.~j)(a/Rj) "+1 cosgt 
j = - ~ n = l  j = - ~ n = l  

+Wa ~2 ~ ~ 1 .+1 D.P.(IZ,)(a/R,) C,P.(lz3)(a/Ri) s ing t+da  ~2 y, ~ ,+1 
j = - - o ~  n = l  j = - - ~  n = O  

(68) 

The velocity potential on the left-hand side of (68) automatically satisfies the boundary 
conditions on the channel walls, namely O(a/Ox = 0 at x = _ b/2. The unknown coefficients 
in (68) are to be determined from the following boundary conditions on the sphere: 

04)10R - el(I.t)/a, 0q~Z0R = Pl~u) cos qJ/a, 0030R - P l Y )  sin ~u/a, (69) 

~q~o 
OR = P~ on R = a .  

The equation for the determination of the coefficients A, will be first obtained. Using the two 
transformations given in (21) and (22), the velocity potential ~bl, defined in (68) may be also 
written as 

oo oo oo o3 

qbl(R, fl, q / ) =  E-4 .P . ( .u ) (a /R)"+l+  Z Z ~. -4m( -1 ) J [ ( -1 ) "+  ( - 1 )  m] 
n = l  j = l n = O m = l  

(m + n)! 
x re!n! (2/J)"+"+lP"(lt)(R/a)"" (70) 

The infinite sum over all positive integers j in (70) may be expressed in terms of the Riemann 
zeta function ((n) defined by 

( (n )=  E j -" ,  (71) 
j = l  

since it can be shown that 

oo 

Z ( -1)JJ  -" = ( 2 1 - " -  1)((n). (72) 
j = l  

Substituting (72) into (70) gives 

co or? oo 

(~ = ~. .4.P.(#)(a/R) "+1 - Z ~. Am[(-1)  m + (-1)"][-1 - 2 - ( n + m ) ]  

n = l  n = 0 m = l  

• ((n + m + 1) (n + m)! 2.+m+lp.(ct)(R/a)." (73) 
n!m! 
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Applying the boundary condition at R = a, (69), results in the following expression for A,: 

2(2n + 1) ~ ~ 2 m + l [  1 __ 2_(2.+Zm+2)] 
A2.+1 = "�89 + (2n +2)!  :o 

x ~(2n + 2m + 3) (2n + 2m + 2)! 2z.+/m+3 ' (74) 
(2m + 1)! 

and Az. = 0. 
Following the same procedure, one can show that the coefficients/~. = C. are to be found 

from 

~ 2 n + l  
(B, C)2.+ 1 = "�89 -~ (n + 1)(2n + 2)! 

cO 

x Y~ (B, C)2m+l~(2n + 2m + 3) (2n + 2m + 2)[ 22.+2,~+ 3 (75) 
,.=o (2m)! 

and/~z. = 0. 
Finally/) .  are given by the solution of the following series: 

4n cO 
/)2. = -6 (n)q  (2n+ 1)! • /52"~(2n + 2m + 1) (2n + 2m)! 2Z.+Zm+l ' (76) 

,. = 0 (2m)! 

where/)2. + 1 = 0. 
Applying equations (15) to (68) and recalling that ~zl2n :/~2n = C2n =/)2n+ 1 = 0 yields the 

following expressions for the three components of the hydrodynamical force experienced by 
the sphere in the channel: 

cO 

4 ~ 3 F x = 5~p ~- [a (U c + 3 U~zt I )] "~- 4~p Uda 2 Z (2n + 3)A2. + 1/)2. + z, 
n = O  

(77a) 

cO 
4 v 3 

F r = 5 ~ p ~  [a (V~ + 3V/~1) ] - 2zpVda 2 Z (2n + 1)(2n + 3)/~2n+l/)2n+2, 
n = 0  

(77b) 

oO 

4 - 3 F~ =-X~p~Ea (W~ + 3WC1) ] - 2~pWda 2 Z (2n + 1)(2n + 3)Cz.+l/)z.+2, 
n = 0  

(77c) 

where (U c, V~, W~) = (U, V, W) for a moving sphere in a quiescent medium. 
It is thus shown that a rigid sphere in a general steady translatory motion exhibits no 

force at the instant its 'center lies on the centerline of the channel. It is only the combination 
of the radial and the translatory motions of the sphere that yield a force. 

8 .  N u m e r i c a l  e x a m p l e s  a n d  d i s c u s s i o n s  

As an illustration of the general analysis for the two-sphere problem (Fig. 1), we consider the 
case of two identical spheres, a 1 = a 2. Of particular interest is the case where the two spheres 
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~--~-~ = 0 ~n 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

Case ( ~  Case(~ Case ( ~  

f 
i 

b/2 ~,U 

Case Q 

V ~ = o  

Cose�9 Cos.�9 
Figure 4. Notation for the six cases corresponding to the motion of a sphere near a rigid wall or a free surface. 

move in an arbitrary manner (including deformation) such that the absolute values of the 
velocity components of both spheres are equal, namely, ej = _+ 1 for j = 0, 1, 2, 3. With a 
proper choice of the directions, of motion of the two spheres, the plane of symmetry (normal 
to the line of centers) can be made an impermeable surface (Neumann problem) or 
alternatively an equipotential surface (Dirichlet problem). The first case corresponds to the 
motion of a sphere near a plane wall, whereas the second case represents the motion of a 
submerged sphere beneath a free surface when the Froude number is large (infinite). When 
the two spheres move in opposite directions, the plane of symmetry is impermeable and by 
considering the half-space problem, the three cases depicted in Fig. 4, namely translatory 
motion of a sphere toward (A) a rigid wall, pulsating (C) near a rigid wall and translation 
parallel to a free surface (E), are obtained. Similarly, when the two spheres move in the same 

direction, the plane of symmetry is equipotential, and cases B, D and F depicted in Fig. 4, 
corresponding to pulsating and translatory motions toward a free surface, as well as trans- 
lation parallel to a rigid wall, are obtained. 

For  these conditions, the coefficients /~1, B,(C,) and D, may be found directly from 
equations (29), (42) and (54) respectively. These infinite sets of linear equations were solved 
by the method of reduction [-19]. In this method, the solution is found by solving a sequence 
of finite systems, each of which is obtained from the infinite set by discarding all equations 
and unknowns beyond a certain number N. The value of N was chosen so as to yield a 
maximum relative error of _+ 10 -4 between successive approximations. This test was 
applied only to the case where the convergence was the slowest, namely the case of touching 
spheres (b/a = 2) and the value of N = 30 was found to fit this error criterion. The various 
coefficients computed for N = 30 and (b/a = 2) are given in Table 1. Only the value ofA 1 for 
touching spheres and e 1 = - 1  can be checked against an exact solution available in the 
literature [9, 12]. Since the added-mass coefficient for a translation along the lines of centers 
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TABLE 1 

The coefficients Zt ~, -1 ~x B, and D, for two identical spheres in contact where N = 30, 

(only the first fifteen values are 9iven) 

T. Mi loh  

n - ~  -g~ ~ 

e 1 = - 1  ~1 = 1 e 2 = - 1  e 2 = 1 e o = - 1  ~o = 1 

0 0.0 0.0 0.0 0.0 1.0 1.0 

1 .600638 .450771 .473265 .540324 -.104381 .177142 

2 .118952 -.045490 -.016768 .029989 -.059422 .155655 

3 .110335 -.030605 -.008666 .019522 -.026169 .123798 

4 .095491 -.017495 -.004100 .012580 -.009159 .099638 

5 .081314 -.008701 -.001792 .008301 -.001753 .081924 

6 .069525 -.003596 -.000701 .005675 .000914 .069290 

7 .060110 -.000966 -.000220 .004032 .001506 .059808 

8 .052610 .000204 -.000027 .002970 .001323 .052416 

9 .046553 .000599 .000037 .002257 .000942 .046460 

10 .041560 .000628 .000048 .001761 .000585 .041529 

11 .037360 .000514 .000041 .001403 .000317 .037358 

12 .033759 .000368 .000029 .001137 .000141 .033767 

13 .030623 .000237 .000019 .000934 .000037 .030632 

14 .027854 .000136 .000011 .000776 -.000018 .027861 

15 .025382 .000066 .000006 .000651 -.000042 .025386 

0.9 

M' 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

CASE (~ 

| 

| 

| 

I I I t 

i(~ 4 10 -3 10 -2 I0 -I I blza - I 

Figure 5. Added mass coefficients for cases A, B, D and E depicted in Fig. 4. 
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is [1 + 3.4] r, it can be shown that A] = -�89 = -0.601028 where ~(n) is the Riemann zeta 
function, implying that the limiting added-mass coefficient is M' -- 0.803084. It can also be 
shown that in the limit of touching spheres and e a = +1, one gets A~ = - ~ ( 3 ) =  
-0.450771, and the added-mass coefficient is M'  -- 0.352313. For values of b/a > 2, the 
convergence of the iteration procedure was faster and the values of the coefficients were 
found to decrease rapidly with a further increase in b. Curves depicting the variation of the 
added-mass coefficients with the spacing b for cases A, B, D and E are given in Fig. 5. The 
added-mass coefficients are simply given by I1 + 3_4]] for a normal (to the boundary) 
motion and by I1 + 3/~1 for a parallel (to the boundary) motion. The limiting values of the 
added-mass coefficients (correct to within four significant figures) for the touching case, 
where found to be 0.8020, 0.3523, 0.4198 and 0.6210 for cases A, B, D and E respectively. The 
added-mass coefficient of two stationary spheres in contact in a uniform flow, has been also 
reported in [133, where the values of 0.35 and 0.61 for cases B and E, respectively, were 
found numerically. 

The added-mass coefficient for a motion of a sphere toward or parallel to a rigid wall can 
be also compared with the corresponding values for the case of a sphere moving in a two- 
dimensional rectangular channel (Fig. 3). The variation of the longitudinal (y-direction) and 
the transverse (x-direction) added-mass coefficients with the spacing between the walls is 
depicted in Fig. 6. The transverse added-mass coefficient is given b y - M '  = 1 + 3A 1 and the 
lontitudinal one b y - M '  = 1 + 3/~1. Here the coefficients A, a n d / ~  are found by solving 
(74) and (75) respectively. It is interesting to note that in the limiting case where the 
sphere is in contact with the walls /~1 = -.693091 and /~1 = -.601242 implying that 
the "transverse" and "longitudinal" added-mass coefficients are 1.079273 and .803726 
respectively. 

1.2 

M' 

I.I TRANSVERSE A.M.C : 1'+3x, I 

1.0 

0.9 

LONGITUDINA 

0.8 i (17 

0.6 

I I 

IO -3 IO 2 IO -I I b/2a - I I0 
Figure 6. The longitudinal (y-direction) and transverse (x-direction) added mass coefficients for a sphere in a 
channel as depicted in Fig. 3. 

0.5 
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In each one of the six modes of motion depicted in Figure 4 the sphere will experience a 
hydrodynamical force which depends on the spacing parameter b. The only component of 
the force that is not identically zero is the x-component which tends to attract (or repel) 
the sphere from the wall (or free surface). For the case of a uniform velocity (no time 
dependency), equation (15a) yields the following expression for the force experienced by the 
sphere in cases A and D as defined in Fig. 4: 

2 f oal U 2 ~o ~l~t } 
F =4zcpa ~ U ~ t +  .=oN" (n+2)A"A"+i ' (78) 

where ~A11/Ot = 0 in case D. 
Similarly, from (15a) the hydrodynamical force for cases B and E is given by 

oo 

2 ~1 ~1 (79)  F~ = 2~pa2V 2 ~ n(n + 2) B~B.+ 1, 
n = O  

and for cases C and F by 

co 

2 ~l ~1 (80) F x = 4zcpa2d 2 Y~ (n q- )D,D.+ r 
n = 0  

To find the value of OAI/Qt in (78) for the case of a sphere approaching a wall (case A), we 
differentiate equation (29) with respect to time which gives the following equation: 

(m + n + 1)! •m+n+l 
Ot b(n + 1)! ,.=1 

n ~ 0A~m (m + n)! ~,,+,+1 (81) 
+ (n~+ 1)! =1 ~t m! "~1 

The coefficients A~m have been found by solving (29), and the same numerical procedure 
may be also used to solve (81) since it can be shown that 

oo 

OAI - 2(U/a) Z (n + 2)A,A,+~1 ~1 r (82) 
Ot ,=o 

To prove (82) we note that the kinetic energy of the fluid bounded by the rigid wall 
and the sphere may be written as T 1 - t  2 j ~ ,  = = yM. U where is the added-mass, M' 
--~zcpa3(1 + 3~) ,  and U is the velocity of the sphere. If we denote the instantaneous dis- 
tance of the sphere from the wall by b', Lagrange's equation ([4], p. 190) yields the follow- 
ing expression for the force on the sphere: 

d d3d' dihr' 
2U db' db' ' Fx = dt ( ) ~ ' U ) - i  2 - �89 2 (83) 

since db'/dt = - U .  Comparing (83) with (78) renders the following relations: 
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d (f f l 'U)= 4zcpUa 2 a.#~ _ _4xpaZU2 a~l~ 
dt ~t ~b ' ' 

(84) 

_{u2 dR' 
d b ' -  2rcpa3U2 ab' - 41rpa2U2 Z (n + 2)A.tA.~+,, (85) 

n = 0  

by which (82) is obtained. 
Substituting (82) in (78), we get the following expression for the hydrodynamical force 

experienced by a sphere moving toward (or away) from a rigid wall; 

oo 

-1 -1 (86) F~ = -4z~paZU 2 ~ (n + 2)A.A.+ 1. 
n = O  

The coefficients ~l  (el = - 1) and/~1 (e z = i) found previously were substituted in (79) and 
(86) yielding the numerical values for the forces experienced by a sphere moving toward or 
parallel to a rigid wall. The variation of these forces with the spacing parameter-b/2 
(distance from the wall) is depicted in Figure 7. The exact solution thus found was also 
compared with the available classical approximate ([18], p. 538) solution for the force acting 
on a sphere moving with uniformvelocity U toward a wall: 

F x ~ 6npa 2 U z (a/b) ~, (87) 

0.7 

f 

0.6 2.4. 

0.5 ~ \ CASE @ Fx= - 7rp a z U 2 f 2 . 0  

- -  EXACT (Eq,15) 
0.4 �9 1.6 

. . . . .  APPROXIMATE [18] 

sE(~ )  f = 6 ( o / b )  4 

0 3  ( ' ~  f = z (a /b )  4 [.2, 

Ol i .... l , , ~ . L _ ~  

I0 -4 I0 "3 I0 -2 I0" I blza -I I0 

Figure 7. Exact versus approximate [18] solution for the force on a sphere moving toward (case A) and parallel 
(case B) to a rigid wall. 
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and for a sphere moving with uniform velocity Vparallel to a rigid wall, namely, 

F ~ 3rcpa 2 V 2 (a/b) ~. (88) 

Figure 7 demonstrates the limitation of the classical solution, based on the method of 
successive images, for small spacing between the sphere and the wall. As an example for 
b/(2a) = 1.1, the error between the exact and the approximate solutions shown in Figure 7 is 
larger than 100~o for case A and about 50% for case B. This error increases considerably 
with a further decrease in the spacing b. 

Figure 8 depicts the variation of the hydrodynamical force with the spacing b for a sphere 
moving toward (case D) and parallel (case E) to a free surface as obtained from (78) and (79) 
for e I = 1 and e 2 = - 1. 

For the limiting case D when the spheres touch, Voinov [12] found the following exact 
solution for the interaction force by employing Lagrange's equation: 

F ,w 7~pa 2 U213~(3) - log 2] = 0.2084 7~pa 2 U 2. (91) 

This solution can also be compared with the present solution by substituting the 
coefficients ~1 for e 1 = 1 (listed in Table 1) in (78) which yields 

F x ~ 0.208395 rcpa 2 U 2 (92) 

in agreement with Voinov's solution (91). 

0.30 

f 

0.25 

0.20 

0.15 

0.10 CASE Q 

| 
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Fx-- 7rpoa Uaf 

Fx=-TTpo2Va f 

i I 

I0 -a 10 -2 i0 -l bl2a - l I0 

Figure 8. Variation of the force with the distance from a free surface for a sphere moving toward (case D) and 

parallel (case E) to it. 
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The force acting on a deforming sphere with a constant rate of radial deformation, in the 
proximity of a rigid or free surface, is depicted in Figure 9. The exact solution found by 
substituting the previously found coefficients/),~ in (80) may be also compared with the 
approximate solution suggested by Leahy [20]. Leahy's solution simply suggests that the 
force experienced by the pulsating sphere varies with the inverse of the distance from the 
boundary. Figure 9 demonstrates that the agreement between the approximate and the 
exact solutions is considerably better for a sphere pulsating near a free surface (case F) than 
for a sphere near a rigid wall (case C). 

Finally, ,it should be noted that according to our sign convention a positive value of the 
force implies that the sphere is attracted toward the wall whereas negative values imply a 
repulsive force. Hence Figures 7-9 show that the sphere is attracted to the wall in the 
following three cases: translation parallel to a rigid wall, translation toward a free surface 
and pulsation near a free surface (cases B, D and F). Similarly, the sphere is repelled from the 
wall when it moves toward a rigid wall, moves parallel to a free surface and pulsates near a 
rigid wall (cases A, C and E). These results may also be obtained using the steady Bernoulli 
equation by considering the velocity and the pressure on the side of the sphere next to the 
wall and on the further side. 

,~ i 
0.91 

0.8 

0.7 

0.6 

�9 0.5 

CASE Q 

�9 
Fx= - 4-rrpa2 fi2 f 

Fx= 4"n'p aZa2f 

- -  EXACT (Eq ,15 )  

APPROXIMATE [20]  

, f = (alb') z 
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~ 
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10 -3 I0 -z I0 -I [ b/2a -I I0 

Figure 9. Exact versus approximate solution for a deforming sphere in the proximity of a rigid wall (case C) and a 
free surface (case F). 
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