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SUMMARY

An exact solution to the two-body interaction problem is presented for the case of spherical shapes moving in an
incompressible and inviscid fluid. The spheres are assumed to translate in an arbitrary manner and to undergo
radial deformation (or pulsation). The problem is formulated in terms of spherical harmonics and the force
experienced by the spheres is obtained by employing the Lagally theorem. The expressions for the force are given as
an infinite sum of coefficients which are found by solving an infinite set of linear equations. Three main geometries
are considered, namely, two spheres exterior to each other, one sphere in the interior of the other and sphere in a
rectangular channel. Numerical values for the added-mass coefficients as well as for the hydrodynamic forces are
found for the case of rigid sphere moving toward or parallel to a rigid wall or a free surface, and a pulsating sphere in
the proximity of these boundaries. Also given are numerical values for the transverse and the longitudinal added-
mass coefficients for a sphere moving in a rectangular channel for different channel-blockage ratios.

1. Introduction

A common hydrodynamical problem involves the determination of the interactive forces
between adjacent moving particles immersed in a fluid medium. This interaction is
important for example in studies of two phase flows, bubble dynamics, mechanics of
suspensions, multi-phase heat and mass transfer, combustion of droplets, settling of rain
drops and hydrodynamics of biological systems. On a large scale the problem arises in the
field of transportation such as the motion of bodies (or vehicles) past each other, critical
collision-avoidance maneuvers as well as maneuvers in a confined or dense medium. When
the distance between the particles is relatively large, their interactive force may be neglected.
However, when the distance decreases so that, for example the concentration of the particles
in a two-phase flow situation is of the order of one percent, the particle interaction must be
considered in the analysis of the hydrodynamical problem [1]. In many cases shapes are
encountered which, to a first-order approximation, may be replaced by equivalent spheres
having the same volume as long as interactive effects are considered. Such spherical shapes
may be rigid, undergo continuous deformation or may exhibit pulsating motion. For
moderate and high Reynolds number flows, a first step towards the solution of the viscous
and possibly thermal problem might be the potential flow solution. In particular the
assumption of potential flow past bubble surfaces was found to be fairly accurate [2].
Potential theory has also direct applications in the analysis of superfluids such as liquid
helium or the interior of a neutron star. In the hydrodynamical analysis of critical
maneuvers of contiguous vehicles, a common practice is to calculate the mutual interactive
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force by assuming the fluid to be inviscid and incompressible. Even with such an
assumption, which was found to yield practical results, the computation of the two-body
interaction is a formidable task. For this reason simple geometries are usually used to
approximate the shapes. For example, a two-sphere model was used in the analysis of the
two-train problem [3].

Several solutions for ideal flow about two rigid spheres are available. The first classical
solutions are due to Stokes [4], Basset [5], Hicks [6] and Herman [7], which are based on
the method of successive images and provide approximate solutions for both the velocity
potential and the kinetic energy of the fluid. Michael [8] solved the problem of potential
flow past a row of identical spheres by using an electromagnetic analogy and more recently
Small and Weihs [9] and Love [10] presented an exact series solution for the potential
function in the two-sphere problem by employing bispherical coordinates. The sphere-
sphere interactive force was considered first by Endo [11], by calculating the pressure
distribution on the spheres, then by Kawaguti [3] for two spheres in collinear motion and
later by Voinov [12] who calculated the force between spheres a small distance apart. The
method of successive images has been also employed by Helfinstine and Dalton [13] who
derived approximate expressions for the interactive force between a group of rigid
stationary spheres in potential flow. To the best knowledge of the author the force between
two deformable spheres in a general motion has not yet been considered.

In the present analysis a generalization of the Lagally theorem [14] and formulation in
terms of spherical coordinates are used to derive exact analytic expressions for the
interactive force between two moving contiguous deformable spheres. The use of spherical
rather than bispherical coordinate system was found to be more convenient for the following
reasons; the use of bispherical coordinates is limited to two spheres in collinear motion
whereas the spherical coordinate system can handle several spheres in general motion. The
bispherical system can not be applied to radial motion of spheres or to the limiting case of
touching spheres. Indeed Weihs and Small [15] have shown that a tangent-sphere rather
than bispherical coordinate system should be used in the limit of two touching spheres. The
present solution is free of these restrictions. In addition the solution presented in [9] is based
on the application of the collocation method which may lead to considerable inaccuracies
due to an improper choice of the mesh points. Spherical coordinates remove the necessity of
collocation and finally enable one to use the recent generalization of the Lagally theorem
[14] to compute the forces acting on the spheres. Finally the present solution is expressed in
terms of simple arithmetic expressions as compared with the complicated algebraic
functions used in [9] and [15].

First an expression for the force acting on a single sphere moving in an arbitrary unsteady
potential flow is derived. The general result thus obtained is used to compute the interactive
force between two spheres in general motion. In addition to the force, expressions for the
kinetic energy and for the added-mass coefficients are also derived.

Three different geometries are considered, namely, two spheres moving in an infinite
medium bounded internally by the two spheres, one sphere moving in the interior of another
sphere, and a single sphere moving in a two dimensional rectangular channel. The first, the
“exterior” case, is related to the common two-body problem, the second “interior” case has
direct application to multiphase heat and mass studies employing the shell-model [16] and
the third case is encountered in the body-in-a-channel or the classical “blockage” problem.
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2. The Lagally force on a single sphere

A single sphere moving through an unsteady and non-uniform inviscid incompressible flow
field will experience a hydrodynamical force. In a Cartesian coordinate system attached to
the center of the sphere let R(x, y, z) denote the radius vector and V(U V,, W,) the absolute
velocity of the sphere. In addition the sphere is allowed to have a uniform time-dependent
radial velocity d where a is the instantaneous radius of the sphere. The image system (inside
the sphere) of the external flow field may be considered as a series of multipoles lying at the

center of the sphere. The exterior potential field may thus be given by

o 1
Py, x)= -3 (— 1)"M,.W <§‘>, R* =x* +y* + 27, (1)

where a, f, y and n are integers such that n = a + f + y, M, is the strength of a general
multipole of order » and 3, denotes summation over all particular values of «, §, and y
representing the multipoles distribution.

The generalized Lagally theorem [14], applied to a deformed spherical shape, yields the
following expression for the hydrodynamical force acting on the sphere.

d o o
FZP{E{ [KV“MZMHW(R)JE— 4ﬂZMnW(v)o}a 2)

where p is the fluid density, 7 denotes the volume of the sphere and v is the velocity induced
at the location of the multipoles by all external flow producing mechanisms. The subscript o
denotes that the various partial derivatives of R and » should be evaluated at the origin, and
t denotes time.

Let the total velocity potential in the flow domain exterior to the sphere be given by the
following series of spherical harmonics:

d(x,y,2)=alU¢ (x, y, 2) + V,(x, y, 2) + Wo5(x, y, 2) + dhy (X, ¥, 2)]

oo}

=a{d %_o: [D,(R/a)" + D,(@/R);** 1P, (1) + U 3. [A,(R/a) + A (a/RY" 1P, (1)

n=0 n=1

+V 3 [B,(Riay + B(@/RY* 1P () cos

n=1

£ WS [CyRjay + C\(a/RY 1P (u) sin y} 6)

n=1

where (U, V, W) denote the three components of the characteristic translatory velocity
vector ¥V and d is the radial velocity of the sphere. Note that for a moving sphere V, = Vand
for a stationary sphere ¥, = 0. The Legendre polynomials are denoted by PZ(u) where
4 = cos 6 such that the transformation between the Cartesian (x, y, z) and the spherical
(R, 6, y) coordinate systems is given by

x=Ry, y=R(l—pu*)tcosy, z=R(l—p*?siny. 4)
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The eight dimensionless coefficients in (3) namely, 4,, B,, C,, D,, and Z", En, C", D~n, are to be
found from the following boundary conditions on the surface of the sphere:

o

g =4+ Us+ V(=) cosy + W (1 — i)t siny (5)
which yield
A~nl Uc/U An
B Y= —15n—1) V¥ +n-7—1 B, b, n=123,.., ©6)
e W c.
and
P n
P =—¢ =0,1,2,...
n (n)+n+1D,,, n=0,12, (7)

Here 6(m) is the Kronecker delta function which is one for m = 0 and zero otherwise.
By applying the general formula [17],

o 0 o\ {1 )
RS PR s N1V — tR—(n+1)ypm imy
. <5y+zax) {R} (= 1F(n — m)! R~ DPT (), ®)

it can be shown that the image of the exterior potential field (1) is given by the following
distribution of multipoles at the origin:

] © (—1)" arﬁl
’ — 2 2 n
¢'(x,y,z) = —da’/R + a n§1 o a T
~ .0 . 0 ~ 0 1
iD )— + nVB — + nWC —— [{—
x[(UAn+a ”)6x +nVn6y+n C"@z}{R} )

where ¢’ denotes the vanishing-at-infinity part of the velocity potential given in (3). The
remaining part of the velocity potential (non-singular at the origin) will contribute to the
non-uniform velocity induced at the origin by all external flow-producing mechanisms,

hence.

Jd 0 0

U(X, Vs Z) = (a: _a;, FZ—) ¢”(x’ 3 Z) (10)

where ¢” is the non-uniform vanishing-at-origin part of the velocity potential given by

Q"(x,y,z)=a § [(UA, + aD,)P,(u) + (VB,cos y + WC, sin y)P}(u)](R/a)". (11)
n=2

At this stage it is convenient to refer to a useful relation [17], namely

o . 1+ m)! _ .
o (RPzGem) = ST geapn e (12)

which is valid for n — m > k and gives zero on the right hand side of (12) for n — m < k.
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Equation (12) can be used to derive the following expressions:

o o \ _ T
sy R} = e (R} = m[ok) = 3ok - 2)) (13)

m

i
TR {R"P,(u) cos y},

m

0 .
= G (P (@) siny}o = 3m + DI6(k — 1), (14)

which are valid for k = 0, 1, 2 and (m, n) > 0. The subscript 0 in (13) and (14) again denotes
that the partial derivatives have to be evaluated at the origin.

Substituting eqs. (6), (7), (13) and (14) into the Lagally theorem (2) yields the following
expressions for the three components of the hydrodynamical force F(F,, F,, F,):

y oz

g [a*(U, + 3UA,)]

Fx=%7fpg

+ 2npa* Y (n+ 2){2[U*4,A,,, + Ud4d,D,,, +DA,,,)

n=0

+d?D D, ]+ nn+2)[V?B

nn+

 + W C,C,. 1 (15a)

nn+

0 ~ ® ~ oo~
F, =§npa[a3(Vc +3VB,)1+2ra’*p 3 (n+2){UV[(n+2)A,B,.,—nBA,,,]
-0

n=

+dV[(n+2)D,B, ., —nBD,, 1}, (15b)

8 ~ © - . -
F,=3np - [@W.+3WC )]+ 2ma’ ¥ (n+ D{UWL(n+ A, —nC,A,. ]

n=0

+dW[(n+2)D,C..,—nC D, . 1. (15¢)

The above expressions are symmetric with respect to y and z but not with respect to x
because of the particular form chosen for the exterior flow field in equation (3). When the
sphere moves in an otherwise undisturbed medium the summations in egs. (15) vanish and
the classical result for the force experienced by a sphere in unsteady motion is obtained. It
will be also shown later that 1 + 34,,1 + 3B, and 1 + 3C, denote the negative values of the
three added-mass coefficients of the sphere in the x, y and z-directions respectively.

As a demonstration of the use of eqgs. (15), the force experienced by a stationary rigid
sphere in a steady “constant shear” flow with velocity potential,

¢"(x, y, 2) = a{Ulx/a + &(2x* — y* — z%)/a*]
+ VIy/a + Bxy/a*] + Wlz/a + jxz/a’]} (16)
is calculated where &, f and 7 are some prescribed coefficients. Substitution of (16) into (11)
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and using (6) yields 4, = B, = C, =1, 4, = 43/3, B, = 2f/3 and C, = 2j/3. The rest of the
coeflicients in (9) are zero. Inserting these values into (15) renders

F, = 2npa®(4aU? + 3BV? + 35W2), (17a)
F, = 2npa®UV(3f — 24), (17b)
F, = 2npa*?UW(37 — 24). (17¢c)

The general expressions for the hydrodynamical force acting on a single sphere moving in a
disturbed medium will be used to compute the force on a moving sphere due to the
proximity of an adjacent sphere. In what follows the general motion of two contiguous
spheres is analysed. The general velocity potential is expressed as a sum of four Kirchhoff
potentials in the manner described in equation (3). Here ¢, denotes the unit velocity
potential due to motion of the spheres along the line joining their centers (taken to be the x-
axis) where ¢, and ¢, are the unit velocity potentials corresponding to motions in the y-
and z-directions respectively in the plane normal to the line of centers. Finally ¢, denotes
the unit potential due to the radial motion of the stationary spheres. In this manner series
solution for the four coefficients 4,, B,, C, and D, are obtained which enable the interactive
force to be calculated directly from equations (15).

3. External motion of two rigid spheres along line of centers

Consider the axisymmetric flow resulting from the motion of two contiguous rigid spheres
in the direction of the line joining their centers. The distance between the centers of the two
spheres, of radii a; and a,, is denoted by b as depicted in Fig. 1. The origin of the Cartesian
coordinate system is chosen to be at the center of the sphere a, such that the x-axis is aligned
along the line of centers. In such a coordinate system the centers of spheres a, and g, are at
(0,0, 0) and (b, 0, 0) and their translatory velocities along the x-axis are denoted by U, and
U, respectively. In addition, two spherical coordinate systems (R, 6, ¥,) and (R,, 0,, v,),
which are attached to the centers of spheres a, and a, respectively, are defined by

x=R,cosf, =R,cos0, +b,
y =R, sin 6, cosy, = R, sin Ozﬂcos 758 (18)
z =R;sind, siny, =R,sinb,siny,.
The far field behaviour of the velocity potential in the domain exterior to the spheres is given
by B B
¢, =U,a; T A P,(u,)a, /R, + Usa, X ZfP"(,uz)(aZ/Rz)"“, (19)

n=1 n=1
where A and A2 are coefficients to be determined and y, = cos ,, u, = cos 8,.

On the assumption of rigid spheres, a Neumann type boundary condition, applied on the
surface of the spheres, implies

o¢
6R1 =U,u, onR, =a, (20a)
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Y
ay R|
az RZ
a Vi
w % N2
2
z b
Figure 1. The “external” case.
o¢
5R1 =U,u, onR,=a, (20b)
2

To apply these boundary conditions to (19), use is made of some transformations [17],

(n+m+k)!
(n—m)!2m + k)!

P'rln('uz)Rz—(n+1)= Z (_l)n—m b ("+m+k+1)Pm+k(ﬂ )Rm+k (21)
k=0

Pru R = 3 (—1f L)

Nl ntmtk+1)pm m+k
k=0 (n—m)!2m + k)! b P )R, (22)

where equation (21) is valid for R, < b and (22) for R, <b.
Substituting (21) into (19) yields for the latter

¢1(R19 /‘1) = U1a1 2 ’Z,I,Pn(ﬂ1)(a1/R1)n+1
n=1

(n+m)

+Ua22 ZAZ( "

n=0m=1

AP (u (R, /a, ), (23)

where A, = a,/b and A, = a,/b. Applying (20a) to (23) together with the orthogonality
properties of the Legendre polynomials, yield the following relation between A! and A2

Al = —L5(n— 1)+ —L—- "1 z A2(—1)m

m+m! .,
(+1) S e, (24)

where ¢, = U,/U,. Repeating the same procedure of substituting (22) into (19) and using
(20b) yields

o m |
A~2=__1. _1 h __ln n—1 11 ( +n) m+2_
; 36(n )+_31(n D! (=1 A7 2 Am——! AT (25)

m=1

The two sets of linear equations (24) and (25) can be solved for the coefficients A, yielding
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S A=, (26)
k=1
where
X =30(n — 1) + ine, A307 (27a)
and
Y= —5(n—k) +———~k!(n’; oA él %E: - T;:E:j:’;;: e (27b)

Once the A} are found, the coefficients A2 may be obtained from (25). In the case where one
of the spheres is stationary, say U, =0 (j =1, 2), the above equations are still valid
providing Uj/T{l is finite. It may be noted that for the particular case of identical spheres,
a, = a, and ¢, = + 1, the solution of (24) and (25) implies that

A2 = (—1y+14L, (28)
For the case of identical spheres the coefficients may be found directly from

_ (nrfll), E it (m +n)!

m=1

Al = —15(m—1) Jmrntt (29)

m!

A quantity of interest is also the kinetic energy T, of the fluid exterior to the spheres which is
given by

—T, =3pU, ‘[

S1

¢1(R1= ﬂ1)ﬂ1 dS1 + %pUz J ¢1(R2a ﬂz)ﬂzdsza (30)
S2

where S, and S, denote the surface of the spheres a, and a, respectively. Substituting (19)
into (30) and performing the integration renders a rather simple result for the kinetic energy
of the fluid, namely,

—T, = 2np[adUA(1 + 34}Y) + a3U(1 + 342)] (31)

implying also that— (1 + 32}) and— (1 + 32% ) are the longitudinal added-mass coefficients
of spheres a, and a,, respectively, for translation along the x-axis.

4. External motion of two rigid spheres normal to line of centers

Here the interaction between two spheres moving in a plane which is normal to the line
joining their centers is analysed. First the case where the two spheres are translating with
velocities ¥V, and ¥, in the y-direction is solved. Because of symmetry the results thus
obtained are also applicable for the case where the spheres are moving in the z-direction
with velocities W, and W,.

In the same coordinate system used in the previous section, the exterior velocity potential
resulting from the motion of the spheres in the y-direction may be written in the following
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form:

¢2 = Vlal > E;:P,}(/‘l)(a1/R1)n+l cosy, + V,a, > B‘,ZIP,I.(/‘z)(az/Rz)"+1 CoOs /5, (32)

n=1 n=1

where w, = v, and both B! and B2 are to be found. The proper boundary conditions on
the surfaces of the spheres are

0
¢ _ V,Pi(u,)cosy, on R, =a,, (33a)
2R,
and
%=VP1(,u)cosy/ on R, =a,. (33b)
24 12 2 2 2
iR,

Using the transformation (21), equation (32) may be rewritten in the following two
equivalent forms:

¢2(R1, Hys V/1) = V1a1 Z E,I.Pyl,(/‘l)(a1/R1)n+l Cos ¥/

n=1

Ve, Y Y B(-1yp mrn)

oD EP )Ry sy, (34)
n=1m=1 . .

or

(R, 0 W5) = Via, X B‘,Z.P,{(ﬂz)(az/Rz)"+1 cos y,

n=1

) © < n (m+n)'
“hax 2 B T

which together with (33a) and (33b) yield

AT P (1, ) (R, Jay ) cos y,, (35)

ne, (m+ n)!

B,1l=—%5(n— ) min lmZ BZ( l)m"(““__—l)“!iyz'ﬁzﬂ (36)
and
n I m+n)! .,
B0 A I By A 7

where ¢, = V,/V,. Solving (36) and (37) for B! gives the following set of linear equations:

Y BiYi=y, (38)

k=1

Journal of Engineering Math., Vol. 11 (1977) 349-372



358 T. Miloh

where

=in—-1)+1 A3 (39)

n+1

and

!
Y= —6(n—k)+ n P’ Z m(m+ n)!(m + k)!

(n+1)n+1)Ek-1) i m+ Dm—=DI(m+ 1)

(40)

Having found E}l, one obtains the coefficients ﬁf from (37). When one of the spheres is
stationary, say V; = 0 (j = 1, 2), the above analysis holds for Vjﬁj, finite. For the particular
case of identical spheres, a, = a, and ¢, = + 1,

B? = (—1)""1B}, (41)

and the coefficients E,{ may be found directly from the simplified version of (36) namely,

® !
= —15m — ne, B’l (m+n) )m+n+1.
20 =D+ w2, o =) (42)
The kinetic energy of the exterior fluid, T,, is given by
—T, =3V, f ¢,(Ry, 1y, ¥, )P (1,) cos yr, dS;
St
+ %sz j d’z(Rza His l//z)P}(ﬂz) cos V/zdsz’ (43)
S2
yielding
— T, = 2np[adV2(1 + 3BY) + a3V2(1 + 3B%)] (44)

again, implying that the longitudinal added-mass coefficients for translation along the y-

axis, are— (1 + 3B1) and — (1 + 3B?) for sphere a, and a, respectively. All the expressions

derived in this section are also valid for the coefficients C! and C? corresponding to motion

in the z-direction, provided B!, B? are replaced by C?, C2, respectively, and , is replaced by
— Wy,

5. External motion due to two adjacent pulsating spheres

Here the spheres are assumed to pulsate with radial velocities d, and d, while the centers of
the spheres remain fixed in a space. Let the velocity potential in the exterior domain be given
by

¢, =d,a, Y D'P (ua,/R)" ! +dja, z D2P (11,)(a,/R,)" "2 (45)

n=0 n=
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D! and D? are some unknown coefficients, and the boundary conditions on the spheres are

990

iR, =d, on R, =a;; -—>—-=d,on R,=a,. (46)

Using the transformations given in (21) and (22), one may express ¢ as

¢O(R1’ #1) = dlal 2 D~:Pn(ﬂ1)(a1/R1)n+l

n=30

tda, Y fﬁfn(—nm“—(m n)!

a=0m=0

AZFIP (1, )R, /a,), (47)
or

d)o(Rza #2) = dzaz Z ﬁanwZ)(az/Rz)n+l
n=0
tda, Y T Di(- 1)"M/l"'“/l"P ()R, fa,), (@)

n=0m=0
which together with (46) yields the following two sets of linear equations:

o m+n)!

and
32 n aqn—1 o A1 (m + n)' m+2
D; o(n) + o(n £ 1! (—1)'45 mZ::ODm o AT, (50)

where ¢, = d,/d, (implying also that D§ = D2 = —1). Solving (49) and (50) for D! gives

T DYy =%, (51)

k=0
where

ne

K. =0(n) + " +01 A3 (52)

and
Hm + k)
V¢ = —S(n— h ket (m+n) 2m+1
n (n—k)+ EICESI] MZO—F_ Dim 1) Agm*l, (53)

For the case where a; = a, and ¢, = +1 we have D! = (—1)'D?, where D! may be found
from a simplified version of (49),

D= —(n) + Z i (m+ )t

An+m+1.
TE +1)1 2 m (54)
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Finally the kinetic energy of the fluid excited by the pulsation of the spheres, T, is given by
— T, = 3pd, J Go(Ry, 41)dS, + 3pd, j $o(Ry, p1)dS,. (55)
S1 S2
Substituting (47) and (48) into (55), one obtains after performing the integration

—T, =2npladd®[—1 + g At ¥ DA(—1)y"am+2]

m=0
o -~
+addi[—1+e'A;t Y DLATHATL, (56)
m=0
which cannot, like the previous cases, be expressed merely in terms of a single coefficient.

6. Internal motion along line of centers of two deforming spheres

Here the motion of sphere a, with velocity U, in the interior of a stationary sphere a, (Fig.
2) is considered. Both spheres are assumed to have radial velacities d, and d, which must
satisfy the relation

d,a; = d,az, (57)

since the fluid bounded by the two spheres is incompressible. The total velocity potential in
the interior fluid domain is expressed as

OR 1) = Ugay 5 LB Ryfay ) + B fan/R, Y 1IP,), (58)

where (R, 1) and (R,, u,) are axisymmetric spherical coordinate systems attached to the
center of spheres a, and a, respectively, and both E_ and E_ are prescribed coefficients. The

az

az

Figure 2. The “internal” case.
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boundary conditions on the spherical surfaces are

o¢ .

2R, =Uwu +4 on R, = a,,
and

op

iR, =d, on R, =a,.

Applying (59a) to (58) yields

~ d n
E ==L 6m)—1smn—1 E.
n U1 é(n) Zé(n )+n+1 n

361

(59a)

(59b)

(60)

To transform (58) into the (R,, #,) coordinate system the following transformations are

used [17]:
P,(uy)(ay/R, )
=Eo( LA 25 P, Ry
and
© '
P R0,) = B e AP, ) Rofa)

by which equation (58) may be expressed as

$(Ry, py)=U,a, Z E E, . (n+m)

n=0m=0

/1"/1 (n+m)P (ﬂz)( Z/az)n

+Ua S 5 E,_ o

m m‘(n m)' /1 (n+1)/{n m+1P (,uz)(az/R )n+1
n=0m=0 :

Applying (59b) to (63) gives

: nntm)! o 2 ox (=1l
D T R 2 ot | K M
= (/12//11)(d2/U1)5(n).

Solving equations (60) and (64) for E, gives

> EY =7,

k=0
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where
Xn = (Ao/2)(dy/U,)d(n) — (d, /U )= 1)"A7 ", 2T
+in(—1yA} Ay 2nth : (66)
and

k! !
V= Ty B = G

k—njy—(2n+1) _
nt 1 kl(n—k) A H(n—k),

(67)
where H(k) is the Heaviside step function which is unity for k > 0 and zero for k < 0.

7. Sphere moving in a two-dimensional rectangular channel

Consider the motion of a sphere of radius a in a two dimensional rectangular channel of
width b at the instance the sphere’s center lies on the center-line of the channel as depicted in
Fig. 3. In a Cartesian coordinate system with the origin at the center of the sphere, the
channel plane walls are given by x = £ b/2. The three components of the translatory
velocity are denoted by (U, V, W) and 4 is the sphere radial velocity. It is also assumed for
simplicity that the fluid in the channel is disturbed only by the motion of the sphere. In this
example, which obviously can not be solved by employing bispherical coordinates, it is of
interest to determine the force and the added mass coefficients of the sphere.

To account for the Neumann boundary conditions on the channel walls, an infinite
row of image-spheres with centers at (jb, 0, 0) is considered. Here j is an integer such that
— o0 < j < oo. In addition, spherical coordinate systems are defined so that the system
(R, 1, w)) lies at the center of the j™ sphere namely at (jb, 0, 0). The value of j = 0 cor-
responds to the original coordinate system such that (R, u, ) = (R, ¢, ¥,,) and similarly
w; = y for all values of .

X

v
Y v

Figure 3. Sphere in a channel.
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Using these notations, one can express the velocity potential in the channel as follows:

OR, pw)=Uad, (R, 1, ) + Vad,(R, py) + Wad;(R, , w) + dado(R, p, )

=Ua ¥ T A(-DP(u)a/R)y ' +Va ¥ 3 B, P u)a/R)""* cosy
j=—won=1 j=—won=1

+Wa ¥ ¥ CP u)a/R)y siny+da ¥ ¥ D.P(u)a/RYy*! (68)
j=—won=1 j=—owon=0

The velocity potential on the left-hand side of (68) automatically satisfies the boundary
conditions on the channel walls, namely d¢/6x = 0 at x = + b/2. The unknown coefficients
in (68) are to be determined from the following boundary conditions on the sphere:

‘Z; = P, (u)/a, %% = Pl(u) cos y/a, %‘f; = P}(u) sin y/a, (69)
0o _ _
R - Py(u)/a on R=a.

The equation for the determination of the coefficients 4, will be first obtained. Using the two
transformations given in (21) and (22), the velocity potential ¢, defined in (68) may be also
written as '

@ @ e8]

o(R, ) = i AP@W@RY + ¥ ¥ ¥ A(-1YI(=1)+ (=1)]
n=1

j=1n=0m=1

!
x P G P R (70)

The infinite sum over all positive integers j in (70) may be expressed in terms of the Riemann
zeta function {(n) defined by

e

=3 j™, | (71)

j=1

since it can be shown that

M s

(=1Yj™"=Q2'7" =~ 1){(n). (72)

j=1

Substituting (72) into (70) gives

GRmy)= 3 APW@RI — S 3 AL(=1)" + (= 1YL — 20+
n=1 n=0m=1
(n+ m)!

x{(n+m+1) o

AP () (R/a)". (73)
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Applying the boundary condition at R = 4, (69), results in the following expression for A:

vl 22n+1) & . o
A2n+1 = —%é(n) +m Z A2m+1[1 I Rl +2m+2)]
*'m=0
(2n + 2m + 2)!
2 MR T AR T 2] gt 2m+3
x {(2n +2m + 3) G+ 11 A , 74

and 4,, = 0.
Following the same procedure, one can show that the coefficients B, = C, are to be found
from

2n+1
(n+ 1)2n + 2)!

(Ea c)2,,+1 = _%5(’1) +

(2n + 2m + 2)!

X "EO (B, €)1 {20 + 2m + 3) m)! Aantam+3 (75)
and B,, = 0.
Finally ﬁn are given by the solution of the following series:
- 4n e (2n + 2m)!
D, =—-¢ - D 2 2. AT A q2n+2m+1
2= =0+ gy 2 Dand @t 2m+ )4 : (76

where D,,,, =0.

Applying equations (15) to (68) and recalling that I‘Tz,. = Ez,, = 52" = D~2,l +1 = 0yields the
following expressions for the three components of the hydrodynamical force experienced by
the sphere in the channel:

i = : i B
F, :%npa-t [aa(Uc +3UA )] +4npUda® ¥ (2n+3)A,,, D540 (77a)
n=0
G 5 c 5 B
F, =§np5t_ [a*(V,+ 3VB,)] - 2rpVia® 3 (2n+1)2n+3)B,, . Dsnis (77v)
n=0
G ~ < ~ B
F, =—‘3£7zp5? [a*(W,+3WC )] — 2npWia* Y, (2n+1)2n+3)C,,, 1 Dypiss (77¢)
n=0

where (U, V,, W.) = (U, V, W) for a moving sphere in a quiescent medium.

It is thus shown that a rigid sphere in a general steady translatory motion exhibits no
force at the instant its center lics on the centerline of the channel. It is only the combination
of the radial and the translatory motions of the sphere that yicld a force.

8. Numerical examples and discussions

As an illustration of the general analysis for the two-sphere problem (Fig. 1), we consider the
case of two identical spheres, a, = a,. Of particular interest is the case where the two spheres
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bz {U
- O+ ﬁ}

Case @ Case Case @

I .

b2y

® o O
Case @ Case @ Case @

Figure 4. Notation for the six cases corresponding to the motion of a sphere near a rigid wall or a free surface.

5
u
o

move in an arbitrary manner (including deformation) such that the absolute values of the
velocity components of both spheres are equal, namely, ¢;=+x1forj=10,1,2,3 With a
proper choice of the directions of motion of the two spheres, the plane of symmetry (normal
to the line of centers) can be made an impermeable surface (Neumann problem) or
alternatively an equipotential surface (Dirichlet problem). The first case corresponds to the
motion of a sphere near a plane wall, whereas the second case represents the motion of a
submerged sphere beneath a free surface when the Froude number is large (infinite). When
the two spheres move in opposite directions, the plane of symmetry is impermeable and by
considering the half-space problem, the three cases depicted in Fig. 4, namely translatory
motion of a sphere toward (A4) a rigid wall, pulsating (C) near a rigid wall and translation
parallel to a free surface (E), are obtained. Similarly, when the two spheres move in the same
direction, the plane of symmetry is equipotential, and cases B, D and F depicted in Fig. 4,
corresponding to pulsating and translatory motions toward a free surface, as well as trans-
lation parallel to a rigid wall, are obtained.

For these conditions, the coefficients A}, BX(C!) and D! may be found directly from
equations (29), (42) and (54) respectively. These infinite sets of linear equations were solved
by the method of reduction [19]. In this method, the solution is found by solving a sequence
of finite systems, each of which is obtained from the infinite set by discarding all equations
and unknowns beyond a certain number N. The value of N was chosen so as to yield a
maximum relative error of + 10”4 between successive approximations. This test was
applied only to the case where the convergence was the slowest, namely the case of touching
spheres (b/a = 2) and the value of N = 30 was found to fit this error criterion. The various
coefficients computed for N = 30 and (b/a = 2) are given in Table 1. Only the value of 4 1 for
touching spheres and &, = —1 can be checked against an exact solution available in the
literature [9, 12]. Since the added-mass coefficient for a translation along the lines of centers
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TABLE 1

The coefficients A!, B!

n?=n

and D} for two identical spheres in contact where N = 30,
(only the first fifteen values are given)

n -4} —B! D!
g =~1 g =1 g,=—1 g =1 gy = —1 gy =1
0 0.0 0.0 0.0 0.0 1.0 1.0
1 600638 450771 - 473265 540324 —.104381 177142
2 118952 —.045490 —.016768 029989 —.059422 155655
3 110335 —-.030605 —.008666 019522 —.026169 123798
4 095491 —.017495 —.004100 012580 ~.009159 .099638
5 081314 —.008701 ~.001792 .008301 —.001753 081924
6 069525 —.003596 —.000701 005675 .000914 069290
7 060110 —.000966 —.000220 004032 .001506 059808
8 052610 .000204 —.000027 .002970 001323 052416
9 046553 000599 .000037 002257 000942 046460
10 041560 000628 .000048 001761 000585 041529
11 037360 000514 000041 001403 000317 037358
12 033759 000368 000029 001137 000141 033767
13 030623 000237 000019 .000934 000037 030632
14 027854 000136 .000011 000776 —.000018 027861
15 025382 .000066 .000006 000651 —.000042 025386
09r
Ml
08 casE (B)
o7
®
06
05
@)
04
03r
0.2 L L : §
o 102 102 io”! | brea-1 10

Figure 5. Added mass coefficients for cases 4, B, D and E depicted in Fig. 4.
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is]l + SZ} |, it can be shown that A! = —1{(3) = —0.601028 where {(n) is the Riemann zeta
function, implying that the limiting added-mass coefficient is M’ = 0.803084. It can also be
shown that in the limit of touching spheres and &, = +1, one gets Al = —3((3)=
—0.450771, and the added-mass coefficient is M’ = 0.352313. For values of b/a > 2, the
convergence of the iteration procedure was faster and the values of the coefficients were
found to decrease rapidly with a further increase in b. Curves depicting the variation of the
added-mass coefficients with the spacing b for cases A4, B, D and E are given in Fig. 5. The
added-mass coefficients are simply given by |1 + 34!| for a normal (to the boundary)
motion and by |1 + SE}I for a parallel (to the boundary) motion. The limiting values of the
added-mass coefficients (correct to within four significant figures) for the touching case,
where found to be 0.8020, 0.3523, 0.4198 and 0.6210 for cases A, B, D and E respectively. The
added-mass coefficient of two stationary spheres in contact in a uniform flow, has been also
reported in [13], where the values of 0.35 and 0.61 for cases B and E, respectively, were
found numerically.

The added-mass coefficient for a motion of a sphere toward or parallel to a rigid wall can
be also compared with the corresponding values for the case of a sphere moving in a two-
dimensional rectangular channel (Fig. 3). The variation of the longitudinal (y-direction) and
the transverse (x-direction) added-mass coefficients with the spacing between the walls is
depicted in Fig. 6. The transverse added-mass coefficient is given by~ M’ = 1 + 34, and the
lontitudinal one by—M’ = 1 + 3B,. Here the coefficients 4, and B, are found by solving
(74) and (75) respectively. It is interesting to note that in the limiting case where the
sphere is in contact with the walls 4, = —.693091 and B, = —.601242 implying that
the “transverse” and “longitudinal” added-mass coefficients are 1.079273 and .803726
respectively.

L E TRANSVERSE A MC= |1+34,]

09

LONGITUDINAL  AM.C= |1+38)|

0o8F

o7

05 I

1
ot 03 10%

1
-l
10 ' brem-y O

J

Figure 6. The longitudinal (y-direction) and transverse (x-direction) added mass coeflicients for a sphere in a
channel as depicted in Fig. 3. »
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In each one of the six modes of motion depicted in Figure 4 the sphere will experience a
hydrodynamical force which depends on the spacing parameter b. The only component of
the force that is not identically zero is the x-component which tends to attract (or repel)
the sphere from the wall (or free surface). For the case of a uniform velocity (no time
dependency), equation (15a) yields the following expression for the force experienced by the
sphere in cases A and D as defined in Fig. 4:

agl Y .
F, = 4npa? {U—&EL +ULT (n+ 2)AiAi+1}a (78)

n=

where 41/t = 0 in case D.
Similarly, from (15a) the hydrodynamical force for cases B and E is given by

_=2npa*V? Y n(n+2y°BLBL, (79)

n=0

and for cases C and F by

F_ =4npa*da® ¥ (n+2)D!D!, .. (80)

n=0

To find the value of 94 1/0t in (78) for the case of a sphere approaching a wall (case A), we
differentiate equation (29) with respect to time which gives the following equation:

oA} 2Un

no_ _ Zl m+nt1
ot b(n + 1)! "El " m! &
n ©® 9AL  (m + n)!
o m ____-lm+n+1_ 81
T e w4 ®1)

The coefficients 4! have been found by solving (29), and the same numerical procedure
may be also used to solve (81) since it can be shown that

agi ol 171
55=—2UM) T (4 DA, (82)
n=0

To prove (82) we note that the kinetic energy of the fluid bounded by the rigid wall
and the sphere may be written as T=1M'U? where M’ is the added-mass, M' =
—47pa3(1 + 34%), and U is the velocity of the sphere. If we denote the instantaneous dis-
tance of the sphere from the wall by b’, Lagrange’s equation ([4], p. 190) yields the follow-
ing expression for the force on the sphere:

M’ aMm’

= (83)

F.= db’

—— (M'U)-1U?
x dt )3V

since db'/dt = — U. Comparing (83) with (78) renders the following relations:
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d Vil 2 aA} 2772 azi
~E{(M U) = 4npUa 5 —4npa*U T (84)
M Al ® .
1 M’ _ 2npa’U? o4y _ Anpa’U* 3 (n + DA, 45, (83)
db’ ob’ V=0

by which (82) is obtained.
Substituting (82) in (78), we get the following expression for the hydrodynamical force
experienced by a sphere moving toward (or away) from a rigid wall;

F.= —4npa*U* ¥ (n + 2)A1 4} (86)

nr+ 1
n=0

The coefficients A2 (¢, = —1) and B} (¢, = 1) found previously were substituted in (79) and
(86) yielding the numerical values for the forces experienced by a sphere moving toward or
parallel to a rigid wall. The variation of these forces with the spacing parameter —b/2
(distance from the wall) is depicted in Figure 7. The exact solution thus found was also
compared with the available classical approximate ([18], p. 538) solution for the force acting
on a sphere moving with uniform-velocity U toward a wall:

F_ =~ 6npa*U*(a/b)*, &7)
07
f
06 244
o5 CASE @ Fee-mpa? Ut 204
Fe= mpa® Vit

ol ExacT (Eq,15) | 6-

L O APPROXIMATE (18] ’

case@ f - s(asb)*
osl f=3(a/b)? 124
@

02k ! — 7
(o S — .

0 L *

0° 03 02 1o | brza -l 10

Figure 7. Exact versus approximate [18] solution for the force on a sphere moving toward (case 4) and parallel
(case B) to a rigid wall.
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and for a sphere moving with uniform velocity V parallel to a rigid wall, namely,
F_ =~ 3npa®V?(a/b)*. (88)

Figure 7 demonstrates the limitation of the classical solution, based on the method of
successive images, for small spacing between the sphere and the wall. As an example for
b/(2a) = 1.1, the error between the exact and the approximate solutions shown in Figure 7 is
larger than 100%, for case 4 and about 50% for case B. This error increases considerably
with a further decrease in the spacing b.

Figure 8 depicts the variation of the hydrodynamical force with the spacing b for a sphere
moving toward (case D) and parallel (case E) to a free surface as obtained from (78) and (79)
fore; =1lande, = —1.

For the limiting case D when the spheres touch, Voinov [12] found the following exact
solution for the interaction force by employing Lagrange’s equation:

F, =~ npa® U[3{(3) — log 2] = 0.2084 npa’ U, (91)

This solution can also be compared with the present solution by substituting the
coefficients Z; for ¢, =1 (listed in Table 1) in (78) which yields

F_~ 0208395 npa® U? (92)

in agreement with Voinov’s solution (91).

030 o
f f
025 Holo
020 4008
0.15 - 008
- 2,2
0.0} CASE © Fg mpatut 4004
- 2,,2
® Fz-mpa™ V= f
005} 002
0 1 1 1 1 0]
i6* 16° 0% 0" I 10

b/2a -1

Figure 8. Variation of the force with the distance from a free surface for a sphere moving toward (case D) and
parallel (case E) to it.
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The force acting on a deforming sphere with a constant rate of radial deformation, in the
proximity of a rigid or free surface, is depicted in Figure 9. The exact solution found by
substituting the previously found coefficients D! in (80) may be also compared with the
approximate solution suggested by Leahy [20]. Leahy’s solution simply suggests that the
force experienced by the pulsating sphere varies with the inverse of the distance from the
boundary. Figure 9 demonstrates that the agreement between the approximate and the
exact solutions is considerably better for a sphere pulsating near a free surface (case F) than
for a sphere near a rigid wall (case C).

Finally, it should be noted that according to our sign convention a positive value of the
force implies that the sphere is attracted toward the wall whereas negative values imply a
repulsive force. Hence Figures 7-9 show that the sphere is attracted to the wall in the
following three cases: translation parallel to a rigid wall, translation toward a free surface
and pulsation near a free surface (cases B, D and F). Similarly, the sphere is repelled from the
wall when it moves toward a rigid wall, moves parallel to a free surface and pulsates near a
rigid wall (cases A, C and E). These results may also be obtained using the steady Bernoulli
equation by considering the velocity and the pressure on the side of the sphere next to the
wall and on the further side.

10
O9F
f
o8 C
o7k case (C) Ry= -ampa?al
® Fe= 4mp a2 42§

osk EXACT (Eq,I5)

~—~—=——  APPROXIMATE [20]

o5k f =(u/b")'2
04t
>l A
o2t T
& ~
N,
N\
N\
ol N
0 : ' ' '
-4 -3 2 ol
O o] 10 10 bobrea- 10

Figure 9. Exact versus approximate solution for a deforming sphere in the proximity of a rigid wall (case C) and a
free surface (case F).
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